Short contribution - EF09 BSM-General: New Fermions and Exotica: Searches for vector-like quarks

Angela Burger, Joe Haley (Oklahoma State U) 26/06/2020

Vector-like quarks (VLQs) in a nutshell

- VLQs are heavy quarks, left and right chiral components have same color & electroweak quantum numbers
 - Singlet, doublet and triplet representations of T, B, and exotic-charged X & Y
 - Expected to mainly couple to 3rd quark generation ⇒ decay to SM t,b + boson
- Predicted in many models, especially those aimed at to solve the hierarchy problem
 - Composite Higgs, little Higgs, extra dimension (KK excitations)
 - o Theories favour a VLQ whose mass not too far from EW scale
- Pair-produced (QCD) & singly-produced (EW)
 - o Pair-production cross-section dependent only on VLQ mass
 - Single-production cross-section also dependent on coupling to SM particles
- Current limits around 1.2-1.4TeV

Further reading:

- arXiv:1409.0100
- arXiv:1306.0572

VLQs in a nutshell - what to look for

- Resonance @ high (VLQ) mass
 - if final state can be reconstructed
- Large scalar sum of object pT in event
 - high-energetic (VLQ) decay products
- Large number of constituents
- b-jets
- boosted W/Z/H-bosons, top quarks

How can future colliders help?

- For pair-production, the cross-section strongly decrease with VLQ mass
 - o Only mild increase for pair production sensitivity expected @ same sqrt(s) with larger lumi
 - pdf drops with transferred momentum approaching kinematic limit sqrt(s)/2
 - Single production more attractive search channel for constant sqrt(s) at some point
 - o Pair-production cross section profits from higher center-of-mass energy at hadron colliders
- Pair-produced VLQ search attractive with higher sqrt(s) hadron colliders

from:

arxiv:1710.02325

What is there already....

- Studies to derive discovery reach of future collider options & determine the dominant coupling chirality using polarisation-sensitive variable
 - Used decays TT->ZtZt or XX->WtWt
 - Hadron colliders, sqrt(s)=14 (<u>arxiv:1309.2234</u>), 27(<u>arxiv:1812.07831</u>), 33 (<u>arxiv:1710.02325</u>, <u>arxiv:1309.2234</u>) TeV, extrapolation to 100TeV hadron collider (<u>arxiv:1710.02325</u>)

Studies done in framework of previous Snowmass and European Strategy

VLQ X(5/3) discovery reach (pair production)

HL-LHC

FCC-hh

0.00 1.00 2.00 3.00 4.00 5.00

update

Potential studies

- Use current Snowmass configuration
 - Perform sensitivity studies @high energy hadron colliders (for example FCC-hh, SppC)
 - Include latest recommendations & techniques, for example large-R jet reconstruction and boson tagging, b-tagging, detector & accelerator parameters
- For high-energy hadron colliders, study VLQ pair production
- For sensitivity studies, use TT/YY->WbWb 1 lepton final state
 - \circ Fundamental decay channel to establish T \rightarrow Wb decay
 - Large branching ratio/high sensitivity expected
 - b-tagging can increase the sensitivity to the signal
- Person-power:
 - Joe Haley (OSU)
 - Angela Burger (OSU)
 - [+others very welcome to join...]

Backup

VLQ decay modes

- VLQ T (charge: ²/₃ e)
 - \circ T \rightarrow Wb
 - \circ T \rightarrow Zt
 - \circ T \rightarrow HT
- VLQ B (charge: -⅓ e)
 - \circ B \rightarrow Wt
 - \circ B \rightarrow Zb
 - \circ B \rightarrow Hb
- VLQ X (charge: 5/3 e)
 - \circ $X \rightarrow Wt$
- VLQ Y (charge: -4/3 e)
 - \circ Y \rightarrow Wb